ar X iv : c on d - m at / 9 40 61 09 v 1 2 7 Ju n 19 94 Kinetics of Heterogeneous Single - Species Annihilation

نویسندگان

  • P. L. Krapivsky
  • E. Ben - Naim
چکیده

We investigate the kinetics of diffusion-controlled heterogeneous single-species annihilation, where the diffusivity of each particle may be different. The concentration of the species with the smallest diffusion coefficient has the same time dependence as in homogeneous single-species annihilation, A+A → 0. However, the concentrations of more mobile species decay as power laws in time, but with non-universal exponents that depend on the ratios of the corresponding diffusivities to that of the least mobile species. We determine these exponents both in a mean-field approximation, which should be valid for spatial dimension d > 2, and in a phenomenological Smoluchowski theory which is applicable in d < 2. Our theoretical predictions compare well with both Monte Carlo simulations and with time series expansions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 94 06 22 6 v 1 [ m at h . C A ] 2 9 Ju n 19 94 COMBINATORIAL ORTHOGONAL EXPANSIONS

The linearization coefficients for a set of orthogonal polynomials are given explicitly as a weighted sum of combinatorial objects. Positivity theorems of Askey and Szwarc are corollaries of these expansions.

متن کامل

ar X iv : c on d - m at / 9 60 61 10 v 1 1 4 Ju n 19 96 Vortex excitation in superfluid 4 He : A Diffusion Monte Carlo study

We present a diffusion Monte Carlo study of a single vortex in two-dimensional superfluid liquid 4 He within the fixed node approximation. We use both the Feynman phase and an improved phase which includes backflow correlations to model the nodal surface of the vortex wavefunction. Results for the particle density, core radius and excitation energies are presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994